
ECE 513 HW6 Arpad Voros

1. Given that
x(n) = {4,−3, 2,−1,−5, 3,−1, 0}, n = 0→ 7

(a) Using only 2-point FFTs, calculate the FFT of x(n)

Heres the MATLAB script. Implemented for any size sequence x(n) where N is a
power of 2

1 %% 1 part a
2

3 % sequence x(n)
4 x = [4, −3, 2, −1, −5, 3, −1, 0];
5

6 % get N, constant WN
7 N = length(x);
8 WN = exp(−1i * 2 * pi / N);
9

10 % result of FFT is result x
11 result x = x;
12 % temporary array holds values, go from one 2−point FFT to another
13 hold x = bitrevorder(result x);
14

15 % array to hold exponents for WN
16 exp array = zeros(1, length(x) / 2);
17 % number of sections for corresponding FFTs
18 blocks = N / 2;
19

20 % loop through each layer of fast DFT algorithm
21 for n = 0:log2(N) − 1
22

23 % populate array for exponents of WN
24 for k = 0:2ˆn:(N / 2) − 1
25 exp array(k + 1: k + 2ˆn) = 0:(N / 2ˆ(n + 1)):(N / 2) − 1;
26 end
27

28 % a = index of exponents for WN
29 a = 1;
30 % other algorithm variables, will explain in a figure later
31 idx = 1;
32 for m = 1:blocks
33 for idx2 = 0:(2ˆn) − 1
34 index = idx + idx2;
35

36 % do the appropriate 2−point FFT
37 radix res = fft([hold x(index), (WNˆexp array(a)) * ...

hold x(index + 2ˆn)], 2);
38

39 % store results into result x
40 result x(index) = radix res(1);
41 result x(index + 2ˆn) = radix res(2);
42

43 a = a + 1;
44 end
45 idx = idx + 2ˆ(n + 1);
46 end
47

48 blocks = blocks / 2;
49 hold x = result x;
50 end

1



ECE 513 HW6 Arpad Voros

Figure 1: Annotated Radix-2 FFT diagram

Figure courtesy of
https://riptutorial.com/algorithm/example/27088/radix-2-fft.

In my algorithm shown above, the whole for loop is represented by the green sec-
tions, blocks is represented by the blue sections, the initial bitrevorder(x) is
done on x to represent the red section, and the exp_array is represented by the
orange sections. As for the indicies, the inner for loop loops through each block to
appropriately compute the 2-point DFT.

Here is the resulting plot of result_x in MATLAB

1 2 3 4 5 6 7 8

sample

0

5

10

15

m
a
g
n
it
u
d
e

FFT of x using Decimation in Time Approach (2-Point DFT's only)

Figure 2: Radix-2 FFT magnitude result

2

https://riptutorial.com/algorithm/example/27088/radix-2-fft


ECE 513 HW6 Arpad Voros

(b) The standard 8-point DFT of x(n) using the MATLAB routine fft looks as such

1 2 3 4 5 6 7 8

sample

0

5

10

15

m
a
g
n
it
u
d
e

FFT of x using 8-Point final DFT

Figure 3: Standard 8-Point FFT magnitude result

(c) The results are identical, with an absolute difference on the magnitude of 10−15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

m
a

g
n

it
u

d
e

 o
f 

d
if
fe

re
n

c
e

10-15 Absolute difference between methods (a) and (b)

1 2 3 4 5 6 7 8

sample

Figure 4: Absolute difference of results

2. (a) Get H(z) in the form

H(z) = E1(z4) + z−1E2(z4) + z−2E3(z4) + z−3E4(z4)

3



ECE 513 HW6 Arpad Voros

E1(z) = 0.0168 + 0.0287z−1 + 0.2453z−2 − 0.0409z−3 (1)

E2(z) = 0.0264− 0.1205z−1 − 0.1205z−2 + 0.0264z−3 (2)

E3(z) = −0.0409 + 0.2453z−1 + 0.0287z−2 + 0.0168z−3 (3)

E4(z) = 0.0334 + 0.6694z−1 + 0.0334z−2 (4)

(b) Appropriate difference equation is given using the following diagram

x(n)

z−1

z−1

z−1

E1(z4)

E2(z4)

E3(z4)

E4(z4)

⊕

⊕

⊕

y(n)

g1(n)

g2(n)

g3(n)

S1(n)

S2(n)

S3(n)

S4(n)

g1(n) = x(n− 1) (5)

g2(n) = g1(n− 1) (6)

g3(n) = g2(n− 1) (7)

S1(n) = 0.0168x(n) + 0.0287x(n− 4) + 0.2453x(n− 8)− 0.0409x(n− 12) (8)

S2(n) = 0.0264g1(n)− 0.1205g1(n− 4)− 0.1205g1(n− 8) + 0.0264g1(n− 12) (9)

S3(n) = −0.0409g2(n) + 0.2453g2(n− 4) + 0.0287g2(n− 8) + 0.0168g2(n− 12) (10)

S4(n) = 0.0334g3(n) + 0.6694g3(n− 4) + 0.0334g3(n− 8) (11)

y(n) = S1(n) + S2(n) + S3(n) + S4(n) (12)

3. (a) The 2N -point sequence y(n) is defined as

y(n) =

{
x(n+1

2 ), n odd

0, n even

where X(k) is the N -point DFT of the sequence x(n) for n ∈ {0, N − 1}
The 2N -point DFT of y(n) is defined as

Y (k) =

2N−1∑
n=0

y(n)e
−j2πnk

2N (13)

4



ECE 513 HW6 Arpad Voros

And since ∀neven, y(n) = 0, the sequence y(n) under the condition that nodd sum-
mated equals the summated sequence x(n). The only difference in the DFT would
be the n in the exponential term, where it ranges from n = 0 → N − 1 ∀nodd,
meaning

2N−1∑
n=0

y(n)e
−j2πnk

2N =

N−1∑
n=0

x(n)e
−j2π(2n−1)k

2N (14)

where 2n − 1 represents the circular odd integers from 0 → N − 1. Keep in mind,
that k ∈ {0, 2N − 1}, so the second equation will be circularly evaluated twice

So that

Y (k) = e
j2πk
2N

N−1∑
n=0

x(n)e
−j2πnk

N = e
j2πk
2N X((k))N , k ∈ {0, 2N − 1} (15)

(b) Given

X3[k] =
1

N

N−1∑
l=0

X1[l]X2[((k − l))N ]

show that x3[n] = x1[n]x2[n]

First, we know from sampling as well as the convolution theorem, that

N

∞∑
r=−∞

δ[n− rN ]←→
∞∑

k=−∞

δ(f − k/N) (16)

so that

1

N

N−1∑
l=0

X1[l]X2[((k − l))N ] =

N−1∑
l=0

N−1∑
n=0

(
x1[n]e

−j2πnl
N x2[n]e

−j2πn(k−l)
N

)
(17)

N−1∑
n=0

x3[n]e
−j2πnk

N =

N−1∑
l=0

N−1∑
n=0

(
x1[n]x2[n]e

−j2πnl
N e

j2πnl
N e

−j2πnk
N

)
(18)

N−1∑
n=0

x3[n]e
−j2πnk

N =

N−1∑
n=0

x1[n]x2[n]e
−j2πnk

N (19)

and then assuming element-wise equivalence, it is shown that

x3[n] = x1[n]x2[n], n = 0, 1, . . . , N − 1 (20)

4. Consider an FIR lattice filter with coefficients K1 = 0.8, K2 = −0.47, K3 = 0.75

(a) Draw the FIR lattice filter

5



ECE 513 HW6 Arpad Voros

x(n)
⊕ ⊕ ⊕

⊕ ⊕ ⊕

y(n)

z−1 z−1 z−1

f1(n) f2(n)

g1(n− 1) g2(n− 1)

0.8 -0.47 0.75

(b) The difference equations are

y(n) = f2(n) + 0.75g2(n− 1) (21)

g2(n) = g1(n− 1)− 0.47f1(n) (22)

f2(n) = f1(n)− 0.47g1(n− 1) (23)

g1(n) = x(n− 1) + 0.8x(n) (24)

f1(n) = x(n) + 0.8x(n− 1) (25)

which gets reduced down to

y(n) = x(n) + 0.0715x(n− 1)− 0.152x(n− 2) + 0.75x(n− 3) (26)

(c) Draw the equivalent direct-form structure

x(n)

z−1 z−1 z−1
⊕ ⊕ ⊕

y(n)

0.75 -0.152 0.0715 1

5. Given

H(z) = 0.1325−0.0867z−1 +0.4205z−2 +1.3592z−3 +0.4205z−4−0.0867z−5 +0.1325z−6

(a) We can split up the transfer function into multiple sections by knowing its roots.
Since all roots are complex, the transfer function H(z) can be split up into multiple
2nd-order sections

H(z) =
1

0.1325
S1(z)S2(z)S3(z) (27)

where
S1(z) = z2 − 1.0184z + 31.0874 (28)

S2(z) = z2 + 0.3968z + 1 (29)

S3(z) = z2 − 0.0328z + 0.0322 (30)

6



ECE 513 HW6 Arpad Voros

Where we can take any sections Sk(z) and Sl(z) where k 6= l to form either the
first or second part of the cascaded filter. For this example, we will create the first
filter F1 out of S1(z) and S2(z) while the second filter F2 will be S3(z). Using the
algorithm in class, we find (by hand) that

F1 : K1 = 0.1984, K2 = 1, K3 = −0.0317, K4 = 31.0874 (31)

F2 : K1 = −0.0317, K2 = 0.0322 (32)

We can confirm this in MATLAB, where I wrote a function to do just this

1 function [Ks, gain] = fir lattice(Hz)
2 % Author: Arpad Voros
3 % fir lattice() routine takes in coefficients of a transfer function
4 % and determines the FIR Lattice coefficients
5 % INPUT: Hz − array of H(z) coefficients
6 % OUTPUT: Ks − coefficents of lattice, ordered from input to ...

output cell array, if needs to be split up (special cases)
7 % gain − the amount of gain for a given lattice
8

9 % initialize some variables
10 order = length(Hz) − 1;
11

12 % initialize outputs
13 Ks = {};
14 gain = {};
15

16 % check special case
17 if Hz(1) == Hz(order + 1)
18 % include first gain
19 if Hz(1) 6= 1
20 gain{end + 1} = Hz(1);
21 end
22

23 % split the roots
24 rootsHz = roots(Hz);
25 split = ceil(length(rootsHz) / 2);
26 if rootsHz(split) == conj(rootsHz(split + 1))
27 split = split + 1;
28 end
29

30 % recursive call
31 [Ks{end + 1}, gain{end + 1}] = fir lattice(poly(rootsHz(1:split)));
32 [Ks{end + 1}, gain{end + 1}] = fir lattice(poly(rootsHz(split + ...

1:end)));
33 else
34 % normalize, place into Az
35 if Hz(1) 6= 1
36 gain{end + 1} = Hz(1);
37 Az = Hz / Hz(1);
38 else
39 Az = Hz;
40 end
41

42 % temporary coefficients to be appended to Ks
43 K = zeros(order, 1);
44

45 % loop
46 for n = order:−1:3
47 % get last coefficient

7



ECE 513 HW6 Arpad Voros

48 K(n) = Az(n + 1);
49

50 % reverse coefficients
51 Bz = flip(Az);
52

53 % get new value of Az
54 Az = (Az − K(n)*Bz)/(1 − K(n)ˆ2);
55 Az = Az(1:end − 1);
56 end
57 % final two coefficients
58 K(2) = Az(3);
59 K(1) = Az(2) / (1 + K(2));
60

61 % append to rest of coefficients
62 Ks{end + 1} = K;
63 end
64

65 % delete empty cells
66 gain = gain(¬cellfun('isempty', gain));
67 end

So by calling fir_lattice in the script below, we get

1 % coefficients of transfer function
2 h = [0.1325, −0.0867, 4.205, 1.3592, 4.205, −0.0867, 0.1325];
3

4 % display gain and K coefficients
5 [result, gain] = fir lattice(h);
6 celldisp(gain);
7 celldisp(result);

gain{1} = result{1}{1} = result{2}{1} =

0.1325 0.1984 -0.0317

1.0000 0.0322

-0.0317

31.0874

(b) Superscripts in this section do not indicate exponentiation, but rather help distin-
guish between F1 and F2, where f1k and g1k correspond to F1 while f2k and g2k cor-
respond to F2. The appropriate difference equations for the cascaded filter above are

y(n) = f21 (n) + 0.0322g21(n− 1) (33)

g21(n) = f14 (n− 1)− 0.0317f14 (n) (34)

f21 (n) = f14 (n)− 0.0317f14 (n− 1) (35)

f14 (n) = f13 (n) + 31.0874g13(n− 1) (36)

g13(n) = g12(n− 1)− 0.0317f12 (n) (37)

8



ECE 513 HW6 Arpad Voros

f13 (n) = f12 (n)− 0.0317g12(n− 1) (38)

g12(n) = g11(n− 1) + f11 (n) (39)

f12 (n) = f11 (n) + g11(n− 1) (40)

g11(n) = x(n− 1) + 0.1984x(n) (41)

f11 (n) = x(n) + 0.1984x(n− 1) (42)

9


